
Similarly, don't forget about ye olde "Verizon Math Fail" recording from a couple years back. Glad that wasn't me.
"Beauty is the Enemy of Expression"
"A large population size must require a larger sample size."This -- or any iteration thereof -- is the dumbest goddamn thing you can say about statistics. While it's a clear demonstration that someone's missed the whole point of inferential statistics, it's also one of the most common things you'll hear about them. (Often in the form of "That sample is only a small proportion of the population.") Here's some of the varieties of this statement that I've encountered over time:
How do they project statistics like that? I'm trying to imagine what kind of sample size you'd need to represent, well, everything in the universe. [In regard to matter/anti-matter ratio in the universe as researched at Fermilab; comment posted at Slashdot]
Adobe claims that its Flash platform reaches '99% of internet viewers,' but a closer look at those statistics suggests it's not exactly all-encompassing... the number of Flash users is based on a questionable internet survey of just 4,600 people — around 0.0005% of the suggested 956,000,000 total. [News summary at Slashdot]
That poll doesn't convince me of 4e's success or lack thereof. Also, there's only 904 total votes while ENWorld has over 74,000 members, so that's only a small fraction of forum members (addmittedly many of those 74,000 are probably inactive). [In regard to the popularity of the D&D game's 4th Edition; comment posted at ENWorld]You get the idea. To save some writing time here, I'll use n to indicate the sample size and N to indicate the population size. For any statistical inference, if n=50 is an acceptable sample for N=1,000, then it's also acceptable for N=10,000, N=1 billion, or N=infinity. In particular, one thing that never really matters is the ratio of sample to population.
If 1.05x = 22.05, then x = ?Now, the correct process is to divide both sides by 1.05, and see that x = 22.05/1.05 = 21. But horribly, if a student mistakenly subtracts 1.05, then they also get the same answer! Say x = 22.05 - 1.05 = 21. Thus, this exercise allows a student to "submarine" a totally broken process (answers are multiple-choice in the book), giving them apparent confirmation that they're doing the right thing when they're absolutely not. (Note that this particular exercise was changed in a newer edition after I pointed it out.)
For x ≠ 3, reduce (x2 - 9)/(x-3).Now, the point of this exercise is to practice factoring (in this case, the top is a "difference of squares") and then cancel like factors on the top & bottom. Write: (x2 - 9)/(x-3) = (x+3)(x-3)/(x-3) = x+3.
The Central Limit Theorem (CLT): For a relatively large sample size, the variable x' is approximately normally distributed, regardless of the distribution of the variable under consideration. The approximation becomes better with increasing sample size. [Weiss, "Introductory Statistics" 7E, p. 341]In other words, any distribution turns into a normal curve when you're sampling (with large sample sizes). I also know off the top of my head that the formal CLT is talking about a distribution that's been standardized (converted z = (x-μ)/(σ/√(n))), and how its limit as a function is the standard-normal curve (centered at 0, standard deviation 1).
To help clarify this concept, think of a set as an envelope. If the set is empty, then the envelope is empty. On the other hand, if the set is not empty -- that is, it contains at least one element -- then there are items in the envelope. One such item can be another envelope. Using this analogy, the symbol {Ø} specifies an empty envelope contained within another envelope. [Setek and Gallo, "Fundamentals of Mathematics" 10th Ed., p. 74]Now, what I think is the jarring discordance in this analogy: You can immediately see the contents inside a { } symbol, but not so with envelopes (being opaque and all). That's probably why the whole metaphor always feels foul in my mouth, and might be part of the reason I get a poor reaction from students when I try to use it in class.
In an article published in 2005, Patricia Clark Kenschaft, a professor of mathematics at Montclair State University, described her experiences of going into elementary schools and talking with teachers about math. In one visit to a K-6 elementary school in New Jersey she discovered that not a single teacher, out of the fifty that she met with, knew how to find the area of a rectangle.[2] They taught multiplication, but none of them knew that multiplication is used to find the area of a rectangle. Their most common guess was that you add the length and the width to get the area. Their excuse for not knowing was that they did not need to teach about areas of rectangles; that came later in the curriculum. But the fact that they couldn't figure out that multiplication is used to find the area was evidence to Kenschaft that they didn't really know what multiplication is or what it is for. She also found that although the teachers knew and taught the algorithm for multiplying one two-digit number by another, none of them could explain why that algorithm works.Holy god, that is insane. I have a hard time imagining anyone being unable to find the area of a rectangle, never mind school staff actually teaching arithmetic, to say nothing of going 0-for-50 in a survey on the subject. I mean... unbelievable! Maybe I should take a poll of students in one of my own classes. Is it possible that people had just forgotten what the word "area" meant?
The school that Kenschaft visited happened to be in a very poor district, with mostly African American kids, so at first she figured that the worst teachers must have been assigned to that school, and she theorized that this was why African Americans do even more poorly than white Americans on math tests. But then she went into some schools in wealthy districts, with mostly white kids, and found that the mathematics knowledge of teachers there was equally pathetic. She concluded that nobody could be learning much math in school and, "It appears that the higher scores of the affluent districts are not due to superior teaching but to the supplementary informal ‘home schooling' of children."On the larger thesis of the article, that current math instruction in K-6 is doing more damage than good, and could and has been dropped successfully at least once... you know what? I can potentially believe that. It's possible. If the quality of math instruction is truly that atrocious, I wouldn't want children subjected to it -- of course the only consistent result would be crippling lifelong math anxiety (per Dijkstra's, "as potential programmers they are mentally mutilated beyond hope of regeneration," and all that).